3.3V, Crystal to 100MHz/ 200MHz Quad HCSL/LVDS **Clock Generator**

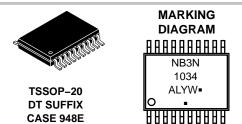
The NB3N51034 is a high precision, low phase noise clock generator that supports spread spectrum designed for PCI Express applications. This device takes a 25 MHz fundamental mode parallel resonant crystal and generates 4 differential HCSL/LVDS outputs at 100 MHz or 200 MHz (See Figure 8 for LVDS interface). The NB3N51034 provides selectable spread options of -0.5%, -1.0%, -1.5%, for applications demanding low Electromagnetic Interference (EMI) as well as optimum performance with no spread option.

Features

- Uses 25 MHz Fundamental Mode Parallel Resonant Crystal
- Power Down Mode
- 4 Low Skew HCSL or LVDS Outputs
- OE Tri-States Outputs
- Spread of -0.5%, -1.0%, -1.5% and No Spread
- PCIe Gen 1, Gen 2, Gen 3 Compliant
- Phase Noise (SS OFF) @ 100 MHz:

Noise Power Offset 100 Hz -110 dBc/Hz1 kHz $-123 \, dBc/Hz$ $-134 \, dBc/Hz$ 10 kHz -137 dBc/Hz 100 kHz 1 MHz -138 dBc/Hz 10 MHz $-154 \, dBc/Hz$

- Operating Supply Voltage Range 3.3 V ±5%
- Industrial Temperature Range –40°C to +85°C
- Functionally Compatible with IDT557-05, IDT5V41066, IDT5V41236 with enhanced performance
- These are Pb–Free Devices


Applications

- Networking
- Consumer

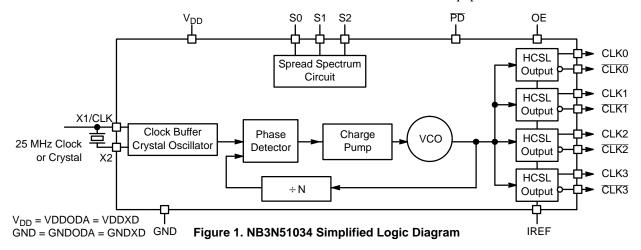
ON Semiconductor®

http://onsemi.com

= Assembly Location

= Wafer Lot = Year W = Work Week = Pb-Free Package

(Note: Microdot may be in either location)


ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

- Computing and Peripherals
- Industrial Equipment
- PCIe Clock Generation Gen 1, Gen 2 and Gen 3

End Products

- Switch and Router
- Set Top Box, LCD TV
- Servers, Desktop Computers
- Automated Test Equipment

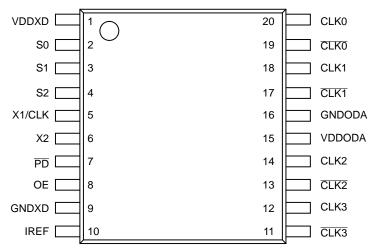


Figure 2. Pin Configuration (Top View)

Table 1. PIN DESCRIPTION

Pin	Symbol	I/O	Description			
1	VDDXD	Power	Connect to a +3.3 V source.			
2	S0	Input	LVTTL/LVCMOS frequency select input 0. Internal pullup resistor to VDDXD. See output select table 2 for details.			
3	S1	Input	LVTTL/LVCMOS frequency select input 1. Internal pullup resistor to VDDXD. See output select Table 2 for details.			
4	S2	Input	LVTTL/LVCMOS frequency select input 2. Internal pullup resistor to VDDXD. See output select Table 2 for details.			
5	X1/CLK	Input	Crystal interface or single-ended reference clock input.			
6	X2	Output	Crystal interface. Float this pin for reference clock input CLK.			
7	PD	Input	LVTTL/LVCMOS power down input. Assert this pin LOW to enter power down mode. Internal pull-up resistor to VDDXD.			
8	OE	Input	Output enable. Tri-state output (High=enable outputs, Low=disable outputs). Internal pull-up resistor.			
9	GNDXD	Power	Connect to digital circuit ground.			
10	IREF	Output	Precision resistor attached to this pin is connected to the internal current reference.			
11	CLK3	HCSL or LVDS Output	Inverted clock output. (For LVDS levels see Figure 8)			
12	CLK3	HCSL or LVDS Output	Noninverted clock output. (For LVDS levels see Figure 8)			
13	CLK2	HCSL or LVDS Output	Inverted clock output. (For LVDS levels see Figure 8)			
14	CLK2	HCSL or LVDS Output	Noninverted clock output. (For LVDS levels see Figure 8)			
15	VDDODA	Power	Connect to a +3.3 V analog source.			
16	GNDODA	Power	Output and analog circuit ground.			
17	CLK1	HCSL or LVDS Output	Inverted clock output. (For LVDS levels see Figure 8)			
18	CLK1	HCSL or LVDS Output	Noninverted clock output. (For LVDS levels see Figure 8)			
19	CLK0	HCSL or LVDS Output	Inverted clock output. (For LVDS levels see Figure 8)			
20	CLK0	HCSL or LVDS Output	Noninverted clock output. (For LVDS levels see Figure 8)			

Table 2. OUTPUT FREQUENCY AND SPREAD SPECTRUM SELECT TABLE

S2*	S1*	S0*	Spread%	Spread Type	Output Frequency
0	0	0	-0.5	Down	100
0	0	1	-1.0	Down	100
0	1	0	-1.5	Down	100
0	1	1	No Spread	N/A	100
1	0	0	-0.5	Down	200
1	0	1	-1.0	Down	200
1	1	0	-1.5	Down	200
1	1	1	No Spread	N/A	200

^{*}Pins S2, S1 and S0 default high when left open.

Recommended Crystal Parameters

Crystal	Fundamental AT-Cut
Frequency	25 MHz
Load Capacitance	16-20 pF
Shunt Capacitance, C0	7 pF Max
Equivalent Series Resistance	50 Ω Max
Initial Accuracy at 25 °C	±20 ppm
Temperature Stability	±30 ppm
Aging	±20 ppm

Table 3. ATTRIBUTES

Characteris	Value			
Internal Input Default State Resistor (110 kΩ			
ESD Protection	2 kV			
Moisture Sensitivity, Indefinite Time C	Level 1			
Flammability Rating	UL 94 V-0 @ 0.125 in			
Transistor Count	132,000			
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test				

^{1.} For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS (Note 2)

Symbol	Parameter	Rating	Units	
V_{DD}	Positive Power Supply with respect to GND (VDDXD and	4.6	V	
VI	Input Voltage with respect to GND (V _{IN})	−0.5 V to V _{DD} +0.5 V	V	
T _A	Operating Temperature Range		-40 to +85	°C
T _{stg}	Storage Temperature Range		-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction–to–Ambient) (Note 3)	0 Ifpm 500 Ifpm	70 61	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)		50	°C/W
T _{sol}	Wave Solder		265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 2. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and not valid simultaneously. If stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected.
- 3. JEDEC standard multilayer board 2S2P (2 signal, 2 power).

Table 5. DC CHARACTERISTICS ($V_{DD} = 3.3 \text{ V} \pm 5\%$, GND = 0 V, $T_A = -40^{\circ}\text{C}$ to +85°C, Note 4)

Symbol	Characteristic	Min	Тур	Max	Unit
V_{DD}	Power Supply Voltage (VDDXD and VDDODA)	3.135	3.3	3.465	V
GND	Power Supply Ground (GNDXD and GNDODA)		0		V
I _{DD}	Power Supply Current, 200 MHz output, -1.5% spread		135		mA
I _{DDOE}	Power Supply Current when OE is Set Low		60		mA
I _{DDPD}	Power Supply Current (PD = Low, no load)		1.5		mA
V _{IH}	Input HIGH Voltage (X1/CLK, S0, S1, S2 and OE)	2000		V _{DD} + 300	mV
V _{IL}	Input LOW Voltage (X1/CLK, S0, S1, S2 and OE)	GND - 300		800	mV
Vmax	Absolute Maximum Output Voltage (Notes 5, 6)			1150	mV
Vmin	Absolute Minimum Output Voltage (Notes 5, 7)	-300			mV
Vrb	Ringback Voltage (Notes 8, 9)	-100		100	mV
V _{OH}	Output High Voltage (Note 5)	660		850	mV
V _{OL}	Output Low Voltage (Note 5)	-150		27	mV
V _{CROSS}	Absolute Crossing Voltage (Notes 5, 9, 10)	250		550	mV
ΔV_{CROSS}	Total Variation of V _{CROSS} (Notes 5, 9, 11)			140	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 4. VDDXD and VDDODA power pins must be shorted to power supply voltage V_{DD} and GNDXD and GNDODA ground pins must be shorted to power supply ground GND. Measurement taken with outputs terminated with $R_S = 33.2 \ \Omega$, $R_L = 50 \ \Omega$, with test load capacitance of 2 pF and current biasing resistor set at 475 Ω . See Figure 7. Guaranteed by characterization.
- 5. Measurement taken from single-ended waveform
- 6. Defined as the maximum instantaneous voltage value including positive overshoot
- 7. Defined as the maximum instantaneous voltage value including negative overshoot
- 8. Measurement taken from differential waveform
- 9. Measured at crossing point where the instantaneous voltage value of the rising edge of CLKx+ equals the falling edge of CLKx-.
- 10. Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.
- 11. Defined as the total variation of all crossing voltage of rising CLKx+ and falling CLKx-. This is maximum allowed variance in the V_{CROSS} for any particular system.

Table 6. AC CHARACTERISTICS ($V_{DD} = 3.3 \text{ V} \pm 5\%$, GND = 0 V, $T_A = -40^{\circ}\text{C}$ to +85°C; Note 12)

Symbol	Characteristic	Min	Тур	Max	Unit
f _{CLKIN}	Clock/Crystal Input Frequency		25		MHz
f _{CLKOUT}	Output Clock Frequency		100/200		MHz
ΦNOISE	Phase–Noise Performance SS OFF fCLKOUT = 100 MHz @ 100 Hz offset from carrier @ 1 kHz offset from carrier @ 10 kHz offset from carrier @ 100 kHz offset from carrier @ 100 Hz offset from carrier @ 1 MHz offset from carrier @ 10 MHz offset from carrier		-110 -123 -134 -137 -138 -154		dBc/Hz
$t_{JIT(\Phi)}$	Phase RMS Jitter, Integration Range 12 kHz to 20 MHz		0.4		ps
f _{MOD}	Spread Spectrum Modulation Frequency	30	31.5	33.33	kHz
SSC _{RED}	Spectral Reduction, f _{CLKOUT} of 100 MHz with –0.5% spread, 3 rd Harmonic (Note 13)		-10		dB
t _{SKEW}	Within Device Output to Output Skew			40	ps
Eppm	Frequency Synthesis Error, All Outputs		0		ppm
tspread	Spread Spectruction Transition Time (Stablization Time After Spread Spectrum Changes)	7		30	ms
t _{OE}	Output Enable/Disable Time (All outputs) (Note 14)			10	μS
t _{DUTY_CYCLE}	Output Clock Duty Cycle (Measured at cross point)	45	50	55	%
t _R	Output Risetime (Measured from 175 mV to 525 mV, Figure 9)	175	340	700	ps
t _F	Output Falltime (Measured from 525 mV to 175 mV, Figure 9)	175	400	700	ps
Δt_{R}	Output Risetime Variation (Single–Ended)			125	ps
Δt_{F}	Output Falltime Variation (Single-Ended)			125	ps
Stabilization Time	Stabilization Time From Powerup V _{DD} = 3.3 V		3.0		ms

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{12.} VDDXD and VDDODA power pins must be shorted to power supply voltage V_{DD} and GNDXD and GNDODA ground pins must be shorted to power supply ground GND. Measurement taken from differential output on single–ended channel terminated with $R_S = 33.2~\Omega$, $R_L = 50~\Omega$, with test load capacitance of 2 pF and current biasing resistor set at 475 Ω . See Figure 7. Guaranteed by characterization.

^{13.} Spread spectrum clocking enabled.

^{14.} Output pins are tri–stated when OE is asserted LOW. Output pins are driven differentially when OE is HIGH unless device is in power down mode, PD = Low.

Table 7. AC ELECTRICAL CHARACTERISTICS - PCI EXPRESS JITTER SPECIFICATIONS,

 $V_{DD} = 3.3 \text{ V} \pm 5\%, T_{A} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}$

Symbol	Parameter	Test Conditions		Min	Тур	Max	PCIe Industry Spec	Unit
tj (PCIe Gen 1)	Phase Jitter Peak-to-Peak	f = 100 MHz, 25 MHz Crystal Input Evaluation Band:	SSOFF		10	20	86	ps
	(Notes 16 and 19)	0 Hz – Nyquist (clock frequency/2)	SSON (-0.5%)		19	28		
tREFCLK_HF_RMS	Phase Jitter	f = 100 MHz, 25 MHz Crystal	SSOFF		1.0	1.8	3.1	ps
(PCIe Gen 2)	RMS (Notes 17 and 19)	Input High Band: 1.5 MHz – Nyquist (clock frequency/2)	SSON (-0.5%)		1.1	1.9		
tREFCLK_LF_RMS	Phase Jitter	f = 100 MHz, 25 MHz Crystal	SSOFF		0.1	0.15	3.0	ps
(PCle Gen 2)	RMS (Notes 17 and 19)	Input Low Band: 10 kHz – 1.5 MHz	SSON (-0.5%)		0.8	1.1		
tREFCLK_RMS	Phase Jitter	f = 100 MHz, 25 MHz Crystal	SSOFF		0.35	0.7	1.0	ps
(PCIe Gen 3)	RMS (Notes 18 and 19)	Input Evaluation Band: 0 Hz – Nyquist (clock frequency/2)	SSON (-0.5%)		0.55	0.8		

^{15.} Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

^{16.} Peak-to-Peak jitter after applying system transfer function for the Common Clock Architecture. Maximum limit for PCI Express Gen 1 is 86 ps peak-to-peak for a sample size of 106 clock periods.

^{17.} RMS jitter after applying the two evaluation bands to the two transfer functions defined in the Common Clock Architecture and reporting the worst case results for each evaluation band. Maximum limit for PCI Express Generation 2 is 3.1 ps RMS for tREFCLK_HF_RMS (High Band) and 3.0ps RMS for tREFCLK_LF_RMS (Low Band).

^{18.} RMS jitter after applying system transfer function for the common clock architecture.

^{19.} VDDXD and VDDODA power pins must be shorted to power supply voltage V_{DD} and GNDXD and GNDODA ground pins must be shorted to power supply ground GND. Measurement taken from differential output on single–ended channel terminated with R_S = 33.2 Ω, R_L = 50 Ω, with test load capacitance of 2 pF and current biasing resistor set at 475 Ω. See Figure 7. This parameter is guaranteed by characterization. Not tested in production.

PHASE NOISE

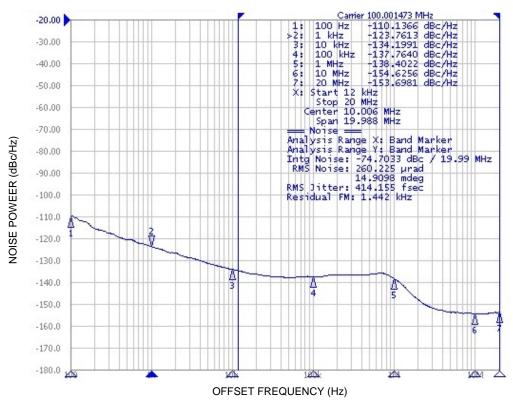


Figure 3. Typical Phase Noise Plot at 100 MHz; (f_{CLKIN} = 25 MHz Crystal , f_{CLKOUT} = 100 MHz SS OFF, RMS Phase Jitter for Integration Range 12 kHz to 20 MHz = 414 fs, Output Termination = HCSL type)

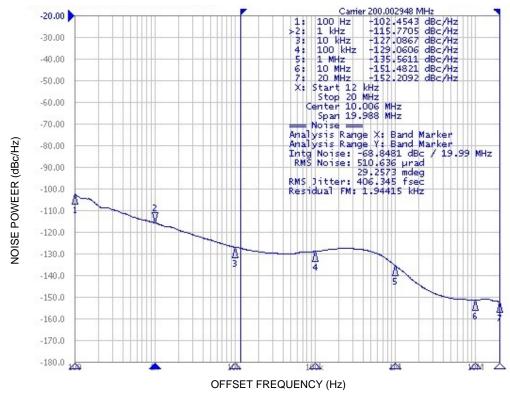


Figure 4. Typical Phase Noise Plot at 200 MHz; (f_{CLKIN} = 25 MHz Crystal , f_{CLKOUT} = 200 MHz SS OFF, RMS Phase Jitter for Integration Range 12 kHz to 20 MHz = 406 fs, Output Termination = HCSL type)

APPLICATION INFORMATION

Crystal Input Interface

Figure 5 shows the NB3N51034 device crystal oscillator interface using a typical parallel resonant crystal. The device crystal connections should include pads for small capacitors from X1 to ground and from X2 to ground. These capacitors, C_1 and C_2 , need to consider the stray capacitances of the board and are used to match the nominally required crystal load capacitance C_L . A parallel crystal with loading capacitance $C_L = 18 \, pF$ would use $C_1 = 26 \, pF$ and $C_2 = 26 \, pF$

as nominal values, assuming approximately 2 pF of stray capacitance per trace and approximately 8 pF of internal capacitance.

$$C_L = (C_1 + C_{stray} + C_{in}) / 2; C_1 = C_2$$

The frequency accuracy and duty cycle skew can be fine-tuned by adjusting the C_1 and C_2 values. For example, increasing the C_1 and C_2 values will reduce the operational frequency.

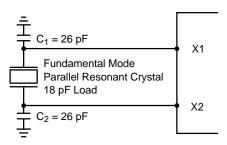
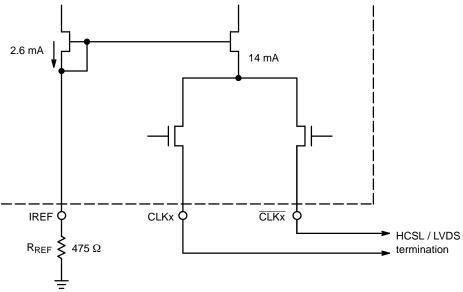


Figure 5. Crystal Interface Loading


Power Supply Filter

In order to isolate the NB3N51034 from system power supply, noise decoupling is required. The 10 μ F and a 0.1 μ F cap from supply pins to GND decoupling capacitor has to be connected between V_{DD} (pins 1 and 15) and GND (pins 9

and 6). It is recommended to place decoupling capacitors as close as possible to the device to minimize lead inductance.

Termination

The output buffer structure is shown in the Figure 6.

Figure 6. Simplified Output Structure

The outputs can be terminated to drive HCSL receiver (see Figure 7) or LVDS receiver (see Figure 8). HCSL output interface requires 49.9 Ω termination resistors to GND for generating the output levels. LVDS output interface may not

require the $100\,\Omega$ near the LVDS receiver if the receiver has internal $100\,\Omega$ termination. An optional series resistor R_L may be connected to reduce the overshoots in case of impedance mismatch.

HCSL INTERFACE

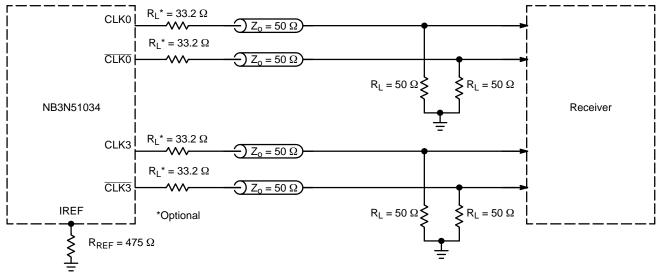


Figure 7. Typical Termination for HCSL Output Driver and Device Evaluation

LVDS COMPATIBLE INTERFACE

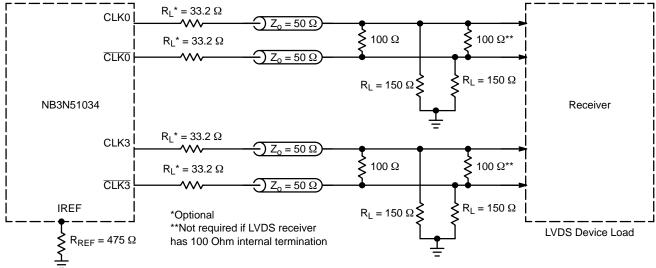
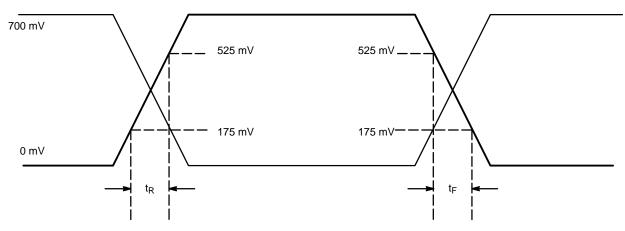
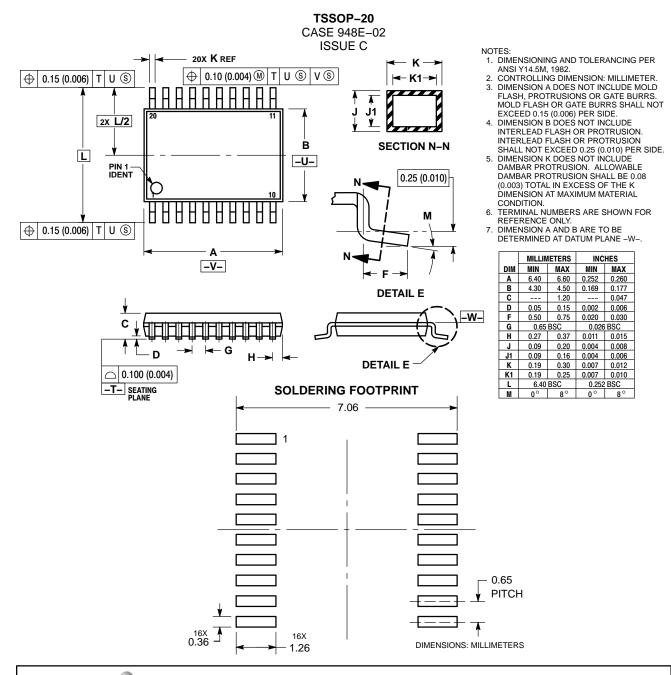


Figure 8. Typical Termination for LVDS Device Load




Figure 9. HCSL Output Parameter Characteristics

ORDERING INFORMATION

Device	Package	Shipping [†]
NB3N51034DTG	TSSOP-20 (Pb-Free)	75 Units / Rail
NB3N51034DTR2G	TSSOP-20 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opport

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative